Quantum Control Theory

Yoichi Uetake

Faculty of Mathematics and Computer Science
Adam Mickiewicz University, Poznań
December 14 (Thursday), 3:00 PM - 4:00 PM, 2023 at Prof. Stanislaw Kielich Auditorium

Faculty of Physics
Adam Mickiewicz University, Poznań

Part 0. From history of control theory/engineering

- Feedback stabilization of steam engines
(J. C. Maxwell "On Governors" 1868)
- Feedback for robust amplifiers (H. S. Black 1927)

$$
\begin{gathered}
y=T u, u=F y+v(T \gg 1, F<1) \\
\Rightarrow y=\frac{T}{1-T F} v \approx-\frac{1}{F} v
\end{gathered}
$$

(T Transfer function $/ S$-matrix for transistor)

Part 1. QSDE and state space equation

§ Classical linear system

Hamiltonian equation

$$
\frac{d X(t)}{d t}=\{H(t), X(t)\}=\frac{\partial H}{\partial p} \frac{\partial X}{\partial q}-\frac{\partial H}{\partial p} \frac{\partial X}{\partial q}
$$

$X(t)=q(t)$ (position) or $X(t)=p(t)$ (momentum)

$$
H(t)=\frac{m \omega^{2}}{2} q(t)^{2}+\frac{1}{2 m} p(t)^{2}-q(t) u(t)
$$

$u(t)$ driving force (input)
\Rightarrow State space equation

$$
\begin{aligned}
\underbrace{\frac{d}{d t}\left[\begin{array}{c}
q(t) \\
p(t)
\end{array}\right]}_{\frac{d}{d t} x(t)} & =\underbrace{\left[\begin{array}{cc}
0 & \frac{1}{m} \\
-m \omega^{2} & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
q(t) \\
p(t)
\end{array}\right]}_{x(t)}+\underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{B} u(t) \\
y(t) & =\underbrace{\left[\begin{array}{cc}
1 & 0
\end{array}\right]}_{C} \underbrace{\left[\begin{array}{c}
q(t) \\
p(t)
\end{array}\right]}_{x(t)} \text { (output) }
\end{aligned}
$$

open system!
(i.e. feedback control based on measurement is possible.)

§ Closed linear quantum system

CCR (Canonical Commutation Relation)

$$
[\hat{q}(t), \hat{p}(t)]=\hat{q}(t) \hat{p}(t)-\hat{p}(t) \hat{q}(t)=i \hbar \text { etc. } \quad(i=\sqrt{-1})
$$

Heisenberg picture (equation)

$$
\frac{d \hat{X}(t)}{d t}=\frac{i}{\hbar}[\hat{H}(t), \hat{X}(t)]
$$

\Rightarrow

$$
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{c}
\hat{q}(t) \\
\hat{p}(t)
\end{array}\right]= & {\left[\begin{array}{cc}
0 & \frac{1}{m} \\
-m \omega^{2} & 0
\end{array}\right]\left[\begin{array}{c}
\hat{\hat{p}}(t) \\
\hat{p}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
1
\end{array}\right] u(t) } \\
y(t) & =\text { ???? (but no output equation!) }
\end{aligned}
$$

Only open-loop control is possible.

§ Open linear quantum system

(quantum system undergoing "continuous measurement")
$\hat{H}(t)=\hat{H}+\hat{H}_{c}(t)$
$\hat{H}_{c}(t)=\chi^{\top} N u(t)$ control Hamiltonian term
($u(t)$ Hamiltonian modulation)
$\left(\chi=\left[\begin{array}{llll}\cdots & \hat{p}_{i} & \hat{q}_{i} & \cdots\end{array}\right]^{\top}\right)$
$\hat{L}(t)=K \chi$ coupling operator
$\hat{H}(t), \hat{L}(t)$ acts on \mathcal{H}
$\hat{a}(t), \hat{a}(t)^{\dagger}$ acts on $\Gamma_{s}(\mathcal{H})$
(annihilation and creation operators on boson Fock space) $\hat{U}(t)$ acts on $\mathcal{H} \otimes \Gamma_{s}(\mathcal{H})$

Belavkin(-Hudson-Parthasarathy) QSDE (1988) (Shortly Belavkin equation)
$d \hat{U}(t)=\left[d \hat{a}(t)^{\dagger} \hat{L}(t)-\hat{L}(t) d \hat{a}(t)-\left\{\frac{i}{\hbar} \hat{H}(t)+\frac{1}{2} \hat{L}(t)^{\dagger} \hat{L}(t)\right\} d t\right] \hat{U}(t)$

Heisenberg picture

$$
x(t)=\hat{U}(t)^{\dagger} \chi \hat{U}(t)=\left[\begin{array}{c}
\vdots \\
\hat{U}(t)^{\dagger} \hat{p}_{\hat{i}} \hat{U}(t) \\
\hat{U}(t)^{\dagger} \hat{q}_{\hat{U}} \hat{U}(t) \\
\vdots
\end{array}\right]
$$

By using quantum Itô rule (H.-P. 1984) $d \hat{a}(t) d \hat{a}(t)^{\dagger}=d t$ etc. we obtain

$$
\begin{aligned}
d x(t) & =A x(t) d t+B u(t) d t+B_{1} d w(t), \quad x(0)=x_{0} \\
d y(t) & =C x(t) d t+D u(t) d t+D_{1} d w(t)
\end{aligned}
$$

Part 2. Crash course for modern control theory by R. E. Kalman

§ State-space equation

Definition. (Continuous-time automaton)
A dynamical system \sum is the collection (A, B, C, D) described by the state-space equation given below.

$$
\begin{aligned}
\frac{d}{d t} x(t) & =A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t) \quad\left(t \in \mathbb{R}_{\geq 0}\right)
\end{aligned}
$$

$u(t) \in \mathbb{R}^{m}$ (input), $x(t) \in \mathbb{R}^{n}$ (state),
$y(t) \in \mathbb{R}^{p}$ (output)
$A \in M_{n \times n}(\mathbb{R}), B \in M_{n \times m}(\mathbb{R}), C \in M_{p \times n}(\mathbb{R}), D \in M_{p \times m}(\mathbb{R})$

§ Controllability

Definition. The pair (A, B) of system Σ is controllable if

$$
\forall x_{0}, x_{1} \in \mathbb{R}^{n} \text { and } t_{1} \in \mathbb{R}_{>0}
$$

$$
\exists(u(t))_{0 \leq t \leq t_{1}} \text { such that } x(0)=x_{0} \text { and } x\left(t_{1}\right)=x_{1} \text {. }
$$

Theorem. Let

$$
\mathcal{C}=\left[\left.\begin{array}{l|l|l|l}
B & \mid & A B & \mid
\end{array} \cdots \right\rvert\, \begin{array}{ll}
A^{n-1} B
\end{array}\right] .
$$

Then the pair (A, B) is controllable $\Leftrightarrow \operatorname{rank} \mathcal{C}=n$.
Remark. \mathcal{C} is called a controllability matrix.

§ Stabilization by state feedback

Theorem. Suppose that the pair (A, B) is controllable. Then $\exists F \in M_{n \times m}(\mathbb{R})$ such that the system $\frac{d}{d t} x(t)=(A+B F) x(t)$ with state feedback $u(t)=F x(t)$ is (asymptotically) stable i.e. $x(t) \rightarrow \overrightarrow{0}(t \rightarrow \infty)$ independently of $x(0)=x_{0}$.

Remark.

$$
\begin{aligned}
& \forall x(0)=x_{0} \in \mathbb{R}^{n} \quad x(t) \rightarrow \overrightarrow{0} \quad(t \rightarrow \infty) \\
& \Leftrightarrow \sigma(A+B F) \subset\{s \in \mathbb{C} \mid \operatorname{Re}(s)<0\}
\end{aligned}
$$

§ Observability.

Definition. (Observability) The pair (A, C) is observable if for any $t_{1}>0$ the initial condition $x(0)=x_{0}$ can be determined from the sequences $(u(t))_{0 \leq t \leq t_{1}}$ and $(y(t))_{0 \leq t \leq t_{1}}$.

Theorem. Let

$$
\mathcal{O}^{T}=\left[\begin{array}{l|l|l|l}
C^{T} & \mid A^{T} C^{T} & \mid & \cdots \\
\left(A^{T}\right)^{n-1} C^{T}
\end{array}\right] .
$$

Then the pair (A, C) is observable $\Leftrightarrow \operatorname{rank}^{T}=n$.
Remark. \mathcal{O} is called an observability matrix.

§ (Luenberger) observer

Construction of an observer

$$
\begin{aligned}
\frac{d}{d t} \hat{x}(t) & =A \hat{x}(t)+B u(t)+K(\underbrace{C \hat{x}(t)}_{\hat{y}(t)}-y(t)) \quad\left(K \in M_{n \times p}(\mathbb{R})\right) \\
& =(A+K C) \hat{x}(t)+B u(t)-K y(t) \\
\Rightarrow \frac{d}{d t} e(t) & =(A+K C) e(t) \quad(e(t)=\hat{x}(t)-x(t))
\end{aligned}
$$

Theorem. Suppose that (A, C) is observable. Then $\exists K \in M_{n \times p}(\mathbb{R})$ such that $e(t) \rightarrow \overrightarrow{0}$ for $t \rightarrow \infty$.
§ Stabilization by feedback $u(t)=F \hat{x}(t)$ with estimator $\hat{x}(t)$
Can $u(t)=F x(t)$ be replaced by $u(t)=F \hat{x}(t)$ without distabilizing the system?
The entire system looks like:

$$
\begin{aligned}
\frac{d}{d t} x(t) & =A x(t)+B u(t)=A x(t)+B F \hat{x}(t) \\
y(t) & =C x(t) \\
\frac{d}{d t} \hat{(}(t) & =A \hat{x}(t)+B u(t)+K(C \hat{x}(t)-y(t)) \\
u(t) & =F \hat{x}(t) .
\end{aligned}
$$

Theorem. (Separation Principle) $x(t), e(t) \rightarrow \overrightarrow{0}$ for $t \rightarrow \infty$.
(So the answer is YES!)

§ Transfer function

Laplace transform $X(s)=\int_{0}^{\infty} x(t) e^{-s t} d t\left(x(0)=x_{0}=\overrightarrow{0}\right)$ (similarly for $u(t) \mapsto U(s)$ and $y(t) \mapsto Y(s)$)

$$
Y(s)=\underbrace{\left[C(s l-A)^{-1} B+D\right]}_{T(s)} U(s) \quad\left(\text { since } \frac{d}{d t} \mapsto s\right)
$$

$T(s)=C(s l-A)^{-1} B+D$ is called the transfer function. We say (A, B, C, D) is a realization of $T(s)$.

Remark. $\left(P A P^{-1}, P B, C P^{-1}, D\right)$ for $z(t)=P x(t)$ is also a realization of $T(s)$.
$\S T(s)$ as a logic gate
$T(s)$ can be considered as a logic gate.
Example. (NOT)

$$
\begin{aligned}
\underbrace{\tau \frac{d}{d t}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]}_{\tau \frac{d}{d t} x(t)} & =\underbrace{\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]}_{x(t)}+\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}_{B} \underbrace{\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]}_{u(t)} \\
y(t) & =\underbrace{\left[\begin{array}{rr}
0 & -2 \\
-2 & 0
\end{array}\right]}_{C} \underbrace{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]}_{x(t)}+\underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]}_{u(t)} \\
T(s) & =C(s I-A)^{-1} B+D=\left[\begin{array}{cc}
0 & \frac{\tau s-1}{\tau S+1} \\
\frac{\tau s-1}{\tau s+1} & 0
\end{array}\right]
\end{aligned}
$$

If $\left(A_{i}, B_{i}, C_{i}, D_{i}\right)$ is a realization of $T_{i}(s)(i=1,2)$ then

$$
T_{2}(s) T_{1}(s) \quad \text { (concatenation) }
$$

and

$$
T_{1}(s) \otimes T_{2}(s) \quad \text { (tensor product) }
$$

are also realized using $\left(A_{i}, B_{i}, C_{i}, D_{i}\right)(i=1,2)$.
§ Linear-Quadratic Regulator (LQR)

$$
\frac{d}{d t} x(t)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

Cost function \rightarrow minimum (Q, R positive definite matrices)
Minimization problem: $\underset{F}{\operatorname{Min}} \int_{0}^{\infty}\left(x(t)^{T} Q x(t)+u(t)^{T} R u(t)\right) d t$
with feedback $u(t)=F x(t)$
Solution: $F=-R^{-1} B^{T} P$
$A^{T} P+P A-P B R^{-1} B^{T} P+Q=0$ (Riccati equation)

§ Kalman(-Bucy) filter

$$
\begin{aligned}
& d x(t)=A x(t) d t+B u(t) d t+d w(t), \quad x(0)=x_{0} \\
& d y(t)=C x(t) d t+D u(t) d t+d v(t) \\
& \mathbb{E}\left[w(t) w(t)^{T}\right]=Q, \mathbb{E}\left[v(t) v(t)^{T}\right]=R \quad \text { (Gaussian) }
\end{aligned}
$$

Minimization problem: $\operatorname{Min}_{K} \mathbb{E}\left[\|\hat{x}(t)-x(t)\|^{2}\right]$
with Kalman(-Bucy) filter:

$$
d \hat{x}(t)=A \hat{x}(t) d t+B u(t) d t+K(C \hat{x}(t)-y(t)) d t
$$

Solution: $K=-P C^{T} R^{-1}$
$A P+P A^{T}-P C^{T} R^{-1} C P+Q=0$ (Riccati equation)
§ Separarion principle for LQG=LQR+Kalman(-Bucy) filter (LQG=Linear Quadratic Gaussian)

Theorem. (Separation Principle) Replace $u=F x(t)$ in LQR by $u(t)=F \hat{x}(t)(\hat{x}(t)=$ estimate given by Kalman filter). Then Separation Principle holds for LQR+Kalman filter.
$\S H^{\infty}$-control (or optimization), robust control (G. Zames)
Simple Example to give a flavor of H^{∞}-control problem

$$
\begin{gathered}
\begin{array}{c}
\frac{d}{d t} x(t)=A x(t)+B u(t)+w(t) \\
u(t)=F x(t) \\
\Rightarrow X(s)=[s I-(A+B F)]^{-1} W(s)
\end{array}
\end{gathered}
$$

Replace the Gaussian assumption $w(t) \sim N(\bar{w}, Q)$ by the assumption $w(t) \in L^{2}(0, \infty)$.

Minimization problem: $\operatorname{Min}_{F}\left\|[s I-(A+B F)]^{-1}\right\|_{H^{\infty}}$

Part 3. Scattering theory and systems
§ Scattering for quantum two-body problem

$$
\hat{H}=-\Delta+V(x)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}+V\left(x_{1}, \ldots, x_{n}\right)
$$

Schrödinger equations:

$$
\begin{gathered}
\frac{\partial}{\partial t}|\psi(t)\rangle=-\frac{i}{\hbar} \hat{H}|\psi(t)\rangle, \quad|\psi(0)\rangle=|f\rangle \\
\Rightarrow|\psi(t)\rangle=e^{-\frac{i}{\hbar} t \hat{H}}|f\rangle=\hat{U}(t)|f\rangle \text { perturbed solution }
\end{gathered}
$$

The stationary Schrödinger equation

$$
\left(\hat{H}-k^{2}\right)|\psi\rangle=0, \quad k>0
$$

+ incoming and outgoing Sommerfeld radiation condition
(a boundary condition at infinity)
The scattering matrix (or S-matrix) $\mathcal{S}: L^{2}\left(\mathbb{R}_{+}, \mathcal{N}\right) \rightarrow L^{2}\left(\mathbb{R}_{+}, \mathcal{N}\right)$ is defined as a mapping $\tilde{f}_{\text {in }} \mapsto \tilde{f}_{\text {out }}$:

$$
\tilde{f}_{\text {out }}(k \vec{\omega})=\mathcal{S}(k) \tilde{f}_{\text {in }}(k \vec{\omega}) \quad\left(\vec{\omega} \text { unit sphere in } \mathbb{R}^{n}\right)
$$

Remark. Heisenberg's scattering (or S-)matrix is

$$
|f(+\infty)\rangle=S|f(-\infty)\rangle
$$

\S Scattering model $\left(\left\{U_{m}(t)\right\}_{t \in \mathbb{R}}, \mathcal{M}\right)$
(Continuous-time Turing machine)

$$
U_{m}(t) \text { acts on } \mathcal{M}=\underbrace{L^{2}\left(\mathbb{R}_{-}, U\right)}_{\text {Incoming space }} \oplus \underbrace{X}_{\text {Scattering space }} \oplus \underbrace{L^{2}\left(\mathbb{R}_{+}, Y\right)}_{\text {Outgoing space }}
$$

Write an element of the Hilbert space \mathcal{M} as

$$
h=\left(u_{-}, x_{0}, y_{+}\right) \in \mathcal{M}
$$

where

$$
\begin{gathered}
u_{-}=u_{-}(\tau) \in L^{2}\left(\mathbb{R}_{-}, U\right)\left(\tau \in \mathbb{R}_{-}\right), \quad x_{0} \in X \\
y_{+}=y_{+}(\tau) \in L^{2}\left(\mathbb{R}_{+}, Y\right)\left(\tau \in \mathbb{R}_{+}\right)
\end{gathered}
$$

The (infinitesimal) generator L of $\left\{U_{m}(t)\right\}_{t \in \mathbb{R}}$ defined by

$$
L h=\lim _{t \rightarrow 0_{+}} \frac{1}{t}\left(U_{m}(t) h-h\right), \quad h \in \operatorname{Dom}(L)
$$

is given by $L h=\left(u_{1}, x_{1}, y_{1}\right)$, where

$$
\begin{aligned}
u_{1}(\tau) & =-\left(\frac{d}{d \tau} u_{-}\right)(\tau) \\
x_{1} & =A x_{0}+B u_{-}(0), \\
y_{1}(\tau) & =-\left(\tau \in \mathbb{R}_{-}\right) \\
d \tau & \\
d+)(\tau) & \left(\tau \in \mathbb{R}_{+}\right)
\end{aligned}
$$

with boundary condition

$$
y_{+}(0)=C x_{0}+D u_{-}(0)
$$

Transfer function and scattering matrix are related as follows.

$$
T(s)=C(s I-A)^{-1} B+D=\mathcal{S}(k) \quad\left(s=-i k^{2}\right)
$$

§ Single Electron Transistor (SET) as a scattering system

$$
\mathcal{M}=\underbrace{L^{2}\left(\mathbb{R}_{-}, U\right)}_{\text {Source }} \oplus \underbrace{X}_{\begin{array}{c}
\text { Island } \\
\text { (Quantum dot) }
\end{array}} \oplus \underbrace{L^{2}\left(\mathbb{R}_{+}, Y\right)}_{\text {Drain }}
$$

$$
T(s)=C(s I-A)^{-1} B+D(=\mathcal{S}(k))
$$

Feedback is given as a boundary condition

$$
u_{-}(0)=F x_{0} .
$$

