

27th August to 1st September 2023 Faculty of Medicine, UCM MADRID

BOOK OF ABSTRACTS

www.jems2023.es

Compact Localised States in Magnonics

Grzegorz Centała¹, Jarosław W. Kłos^Ī* ¹ ISQI, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland *klos@amu.edu.pl

In bipartite lattices, the sites from sublattice A have the nearest neighbours (NN) in sublattice B only. Therefore, the mods occupying one sublattice are not able to propagate (in tight-binding models with NN hopping) and the dispersion relation can by described as flat bands with zero group velocity. Such modes, localized without defects in a perfectly periodic and infinitely extended system, are called compact localized states (CLS) [1]. The well-known type of bipartite lattice is a Lieb lattice [2]. The CLS were already observed in photonic crystals based on Lieb lattices [3] but the studies on CLS in the magnonic system still need to be performed. We proposed a perpendicularly magnetized Ga-doped YIG layer as a base for a magnonic Lieb lattice where the lattice sites are mimicked by cylindrical inclusion made of YIG (without Ga-doping). We tailored the structure to observe the oscillatory and evanescent spin waves in inclusions and matrix, respectively. We calculated the dispersion relations exhibiting Dirac cones, almost touching each other at the M-point (with a very narrow gap ~15 MHz), intersected by a relatively flat band of magnonic CLS. Then, we supplemented our studies by considering the extended magnonic Lieb lattices, characterized by a larger number of weakly dispersive bands specific for CLS. The computations were performed by finite element method, using COMSOL Multiphysics.

Acknowledgements

The authors would like to acknowledge the support from the National Science Center – Poland grants No. 2020/39/O/ST5/02110 and 2021/43/I/ST3/00550. GC acknowledges Polish National Agency for Academic Exchange grant BPN/PRE/2022/1/00014/U/00001.

References

- [1] J.-W. Rhim and B.-J. Yang, Phys. Rev. B 99 (2019) 045107.
- [2] E. H. Lieb, Phys. Rev. Lett. 62 (1989), 120; erratum 62 (1989), 1927
- [3] D. Leykam et al, ADV PHYS-X 3 (2018), 1473052.

Figure: (a) Dispersion relation for (b) magnonic Lieb lattice with perpendicularly applied field (100 mT) shows (c) Dirac cones intersected by the flat band (green sheet) where (d) compact localized states (M_2^{\leftarrow}) are found.