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Lieb lattice is one of the simplest bipartite lattices where flat bands and compact localized states are observed. We demonstrate
the possibility of realizing a magnonic Lieb lattice in a planar structure of sub-micron in-plane sizes. The Ga-doped YIG layer with
cylindrical inclusions (without Ga content) arranged in a Lieb lattice has been investigated numerically (finite element method).
Such a design reproduces the Lieb lattice of nodes (inclusions) coupled to each other by the matrix with the compact localized states

in flat bands.

Index Terms—magnonic crystals, flat bands, compact localized states

I. INTRODUCTION

HE LIEB LATTICE is a complex lattice, where the

nodes of minority (square) sublattice, connect to each
other only via the nodes from other two majority (square)
sublattices (Fig. 1). In such system the flat bands are observed
in the absence of defects [1]. An intuitive explanation for the
presence of the flat bands is the internal isolation of excitations
located in one of the sublattices. The canceling of excitations
at one sublattice is the result of destructive interference and
local symmetry within the complex unit cell [2]. When only
one of the sublattices is excited, the other sublattice does not
mediate the coupling between neighboring unit cells, and the
phase difference between the cells is irrelevant to the energy
(or the frequency) of the eigenmode on the whole lattice -
i.e. the Bloch function. The Bloch functions for flat band are
then degenerated for every value of wave number k. The
linear combination of Bloch functions differing in k (with
a coefficients f(k)e®'X, where f(k) is arbitrary continuous
function) are localized around lattice vector R, similarly like
Wannier functions — these states are called compact localized
states.

The topic of Lieb lattices and other periodic structures
with compact localization and flat bands was renewed [1]
about 10 years ago when physical realizations of synthetic
Lieb lattices began to be considered for electronic systems,
optical lattices, superconducting systems, in phononics, and
photonics. Lieb lattices have also been studied in the context of
magnetic properties, mainly due to the possibility of enhancing
ferromagnetism in systems of correlated electrons [3], where
the occurrence of flat bands with zero kinetic energy was used
to expose the interactions. However, the comprehensive studies
of spin waves in nanostructures that realize magnonic Lieb
lattices and focus on wave effects in a continuous model have
not been carried out so far. This digest briefly summarizes
the results presented in our paper [4], where we proposed the
realization of the magnonic Lieb lattice.

II. MAGNONIC LIEB LATTICE

We considered the planar magnonic crystal (MC) — see
Fig. 1, because of its relative ease of fabrication and ex-
perimental characterization. We propose realistic systems that

Fig. 1. (a) The magnonic Lieb lattice has a form of planar magnonic crystal
consisting of YIG cylindrical nanoelements embedded within Ga:YIG matrix.
Dimensions of the ferromagnetic unit cell for the basic Lieb lattice are equal
to 250x250x59 nm. (b) The unit cell contains three inclusions of 50 nm in
diameter. The separation between centers of inclusions is equal to 125 nm.

mimic the main features of the tight-binding model of Lieb
lattice [S]. Investigated MCs consist of yttrium-iron-garnet
(YIG) doped with gallium (Ga:YIG) matrix and YIG cylin-
drical inclusions arranged in Lieb lattice (Fig. 1(b)). Doping
YIG with Gallium is a procedure where magnetic Fe>* ions
are replaced by non-magnetic Ga®" ions. This method not
only decreases saturation magnetization Mg but, simultane-
ously, arises uniaxial out-of-plane anisotropy, that ensures the
out-of-plane orientation of static magnetization in Ga:YIG
layer at a relatively low external field applied perpendicu-
larly to the layer. Discussed geometry, i.e. forward volume
magnetostatic spin-wave configuration, does not introduce
an additional anisotropy in the propagation of spin waves
related to the orientation of static magnetization. The design
of the Lieb lattice requires the partial localization of spin-
wave in inclusions, which can be treated as an approximation
of the nodes from the tight-binding model. The condition
which guarantees the focusing of magnetization dynamics
inside the inclusions is fulfilled in the frequency range below
the ferromagnetic resonance (FMR) frequency of the out-of-
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Fig. 2. Dispersion relation for the basic magnonic Lieb lattice containing
three inclusions in the unit cell: one inclusion A from minority sublattice and
two inclusions B from majority sublattices (see Fig. 1) (a) The dispersion
relation is plotted along the high-symmetry path I'-X-M-I" (see the inset).
The lowest band (blue) and the highest band (red) create Dirac cones almost
touching (b) in the M point. The middle band (green) is relatively flat in the
vicinity of the M point.

plane magnetized layer made of Ga:YIG (matrix material):
frMRr,Ga:vic = 4.95 GHz and above the FMR frequency
of out-of-plane magnetized layer made of YIG (inclusions
material): frvr,yic = 2.42 GHz. These limiting values were
obtained using the Kittel formula for out-of-plane magnetized
film: frmr = (7/27)|poHo + proHani — ptoMs|, where we
used the following values of material parameters [6] for
YIG: gyromagnetic ratio v = 177 rad T~ 'ns ™!, magnetization
saturation poMg = 182.4 mT, exchange stiffness constant
A = 3.68 pJm~!, (first-order) uniaxial anisotropy field
toH,ni = —3.5 mT, and for Ga:YiG: v = 179 rad T~ 'ns !,
poMs =202mT, A= 1.37pIm~", poH,pn = 94.1 mT. Due
to the presence of out-of-plane anisotropy and relatively low
saturation magnetization, we could consider a small external
magnetic field poHy = 100 mT to reach saturation state.

III. METHOD AND RESULTS

We used the COMSOL Multiphysics to implement the
Landau-Lifshitz-Gilbert (LLG) equation and performed finite
element method computation for the defined geometry of
magnonic Lieb lattices. The frequency spectrum of eigen-
modes depending on wave vector was determined by solving
linearized LLG equations directly in the frequency domain.
The results are shown in Fig. 2.

Three lowest bands form a band structure that is similar to
the dispersion relation known from the tight-binding model
[7]. The first and third band form Dirac cones at M point,
separated by a tiny gap of about 15 MHz. The possible mech-
anism responsible for opening the gap is a small difference in
the demagnetizing field in the areas of inclusions A (from
the minority lattice) and inclusions B (from two majority
sublattices). Inclusions A (B) have four (two) neighbors of
type B (A). Although inclusions A and B have the same
size and are made of the same material, the static field
of demagnetization inside them differs slightly due to the
different vicinity. This effect is equivalent to the dimerization
of the Lieb lattice by varying the energy of the nodes in
the tight-binding model, which leads to the opening of a gap
between Dirac cones and parabolic flattening of them in very
close proximity to the M point.

We proved that the second band supports the compact
localized states regardless of its finite width [4]. The phases
and amplitudes of the spin waves concentrated in inclusion A
and two inclusions B are in agreement with the predictions of
tight-binding models [8]:

|mk) = [—cos(kya/Z),\O’/,cos(k‘ma/Z)]T, ()

B, A By

where k = [kg, k,] is wave vector and a size of unit cell
(Fig. 1(b)).

IV. CONCLUSIONS

The magnonic Lieb lattices allow considering many prob-
lems related to dynamics, localization, and interactions in flat-
band systems taking the advantage of the magnonic systems:
presence and possibility of tailoring of long-range interactions,
intrinsic non-linearity, etc.
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