Dr hab. Ravindra W. Chhajlany, prof. UAM
- Loc: wing G, second floor, room 279
- Email: ravi@amu.edu.pl
Scientific degrees
Ph. D. – 2008
Habilitation – 2019
Research interests
Keywords: theoretical physics, quantum many body physics, quantum optics, quantum information and computation
My research is focussed around the fundamental understanding of collective quantum effects in both real and artificial matter as well as their control and engineering, in particular, via light-matter interactions. Beyond this, I have a long-standing interest in quantum technology applications such as quantum computation and communication, as well as the development of numerical methods for many body physics.
Scientific achievements
Awards:
2013-2015 – Mobility Plus Research Fellowship (Competitive program of the Polish Ministry of Science and Higher Education)
2008, 2009 – Scholarship of the Foundation for Polish Science (Young Scientist program START)
2007 – City of Poznan scholarship for young scientists
Publications
2024 |
|
7. | Javier Argüello-Luengo, Utso Bhattacharya, Alessio Celi, Ravindra W. Chhajlany, Tobias Graß, Marcin Płodzień, Debraj Rakshit, Tymoteusz Salamon, Paolo Stornati, Leticia Tarruell, Maciej Lewenstein Synthetic dimensions for topological and quantum phases Communications Physics, 7 (1), pp. 143, 2024. @article{Arguello-Luengo2024-ip, title = {Synthetic dimensions for topological and quantum phases}, author = {Javier Argüello-Luengo and Utso Bhattacharya and Alessio Celi and Ravindra W. Chhajlany and Tobias Graß and Marcin P{ł}odzie{ń} and Debraj Rakshit and Tymoteusz Salamon and Paolo Stornati and Leticia Tarruell and Maciej Lewenstein}, url = {https://www.nature.com/articles/s42005-024-01636-3#citeas}, doi = {10.1038/s42005-024-01636-3}, year = {2024}, date = {2024-05-04}, journal = {Communications Physics}, volume = {7}, number = {1}, pages = {143}, abstract = {The concept of synthetic dimensions works particularly well in atomic physics, quantum optics, and photonics, where the internal degrees of freedom (Zeeman sublevels of the ground state, metastable excited states, or motional states for atoms, and angular momentum states or transverse modes for photons) provide the synthetic space. In this Perspective article we report on recent progress on studies of synthetic dimensions, mostly, but not only, based on the research realized around the Barcelona groups (ICFO, UAB), Donostia (DIPC), Poznan (UAM), Kraków (UJ), and Allahabad (HRI). We describe our attempts to design quantum simulators with synthetic dimensions, to mimic curved spaces, artificial gauge fields, lattice gauge theories, twistronics, quantum random walks, and more.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The concept of synthetic dimensions works particularly well in atomic physics, quantum optics, and photonics, where the internal degrees of freedom (Zeeman sublevels of the ground state, metastable excited states, or motional states for atoms, and angular momentum states or transverse modes for photons) provide the synthetic space. In this Perspective article we report on recent progress on studies of synthetic dimensions, mostly, but not only, based on the research realized around the Barcelona groups (ICFO, UAB), Donostia (DIPC), Poznan (UAM), Kraków (UJ), and Allahabad (HRI). We describe our attempts to design quantum simulators with synthetic dimensions, to mimic curved spaces, artificial gauge fields, lattice gauge theories, twistronics, quantum random walks, and more. |
6. | Bárbara Andrade, Utso Bhattacharya, Ravindra W. Chhajlany, Tobias Graß, Maciej Lewenstein Observing quantum many-body scars in random quantum circuits Phys. Rev. A, 109 , pp. 052602, 2024. @article{PhysRevA.109.052602, title = {Observing quantum many-body scars in random quantum circuits}, author = {Bárbara Andrade and Utso Bhattacharya and Ravindra W. Chhajlany and Tobias Graß{} and Maciej Lewenstein}, url = {https://link.aps.org/doi/10.1103/PhysRevA.109.052602}, doi = {10.1103/PhysRevA.109.052602}, year = {2024}, date = {2024-05-01}, journal = {Phys. Rev. A}, volume = {109}, pages = {052602}, publisher = {American Physical Society}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
5. | Yuma Watanabe, Utso Bhattacharya, Ravindra W. Chhajlany, Javier Argüello-Luengo, Maciej Lewenstein, Tobias Graß Competing order in two-band Bose-Hubbard chains with extended-range interactions Phys. Rev. B, 109 , pp. L100507, 2024. @article{PhysRevB.109.L100507, title = {Competing order in two-band Bose-Hubbard chains with extended-range interactions}, author = {Yuma Watanabe and Utso Bhattacharya and Ravindra W. Chhajlany and Javier Argüello-Luengo and Maciej Lewenstein and Tobias Graß}, url = {https://link.aps.org/doi/10.1103/PhysRevB.109.L100507}, doi = {10.1103/PhysRevB.109.L100507}, year = {2024}, date = {2024-03-01}, journal = {Phys. Rev. B}, volume = {109}, pages = {L100507}, publisher = {American Physical Society}, keywords = {}, pubstate = {published}, tppubtype = {article} } |
2023 |
|
4. | Javid Naikoo, Ravindra W. Chhajlany, Jan Kołodyński Multiparameter Estimation Perspective on Non-Hermitian Singularity-Enhanced Sensing Phys. Rev. Lett., 131 , pp. 220801, 2023. @article{PhysRevLett.131.220801, title = {Multiparameter Estimation Perspective on Non-Hermitian Singularity-Enhanced Sensing}, author = {Javid Naikoo and Ravindra W. Chhajlany and Jan Kołodyński}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.131.220801}, doi = {10.1103/PhysRevLett.131.220801}, year = {2023}, date = {2023-11-29}, journal = {Phys. Rev. Lett.}, volume = {131}, pages = {220801}, publisher = {American Physical Society}, abstract = {Describing the evolution of quantum systems by means of non-Hermitian generators opens a new avenue to explore the dynamical properties naturally emerging in such a picture, e.g. operation at the so-called exceptional points, preservation of parity-time symmetry, or capitalizing on the singular behavior of the dynamics. In this Letter, we focus on the possibility of achieving unbounded sensitivity when using the system to sense linear perturbations away from a singular point. By combining multiparameter estimation theory of Gaussian quantum systems with the one of singular-matrix perturbations, we introduce the necessary tools to study the ultimate limits on the precision attained by such singularity-tuned sensors. We identify under what conditions and at what rate can the resulting sensitivity indeed diverge, in order to show that nuisance parameters should be generally included in the analysis, as their presence may alter the scaling of the error with the estimated parameter.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Describing the evolution of quantum systems by means of non-Hermitian generators opens a new avenue to explore the dynamical properties naturally emerging in such a picture, e.g. operation at the so-called exceptional points, preservation of parity-time symmetry, or capitalizing on the singular behavior of the dynamics. In this Letter, we focus on the possibility of achieving unbounded sensitivity when using the system to sense linear perturbations away from a singular point. By combining multiparameter estimation theory of Gaussian quantum systems with the one of singular-matrix perturbations, we introduce the necessary tools to study the ultimate limits on the precision attained by such singularity-tuned sensors. We identify under what conditions and at what rate can the resulting sensitivity indeed diverge, in order to show that nuisance parameters should be generally included in the analysis, as their presence may alter the scaling of the error with the estimated parameter. |
2022 |
|
3. | Tymoteusz Salamon, Bernhard Irsigler, Debraj Rakshit, Maciej Lewenstein, Tobias Grass, Ravindra W. Chhajlany Flat-band-induced superconductivity in synthetic bilayer optical lattices Phys. Rev. B, 106 , pp. 174503, 2022. @article{PhysRevB.106.174503, title = {Flat-band-induced superconductivity in synthetic bilayer optical lattices}, author = {Tymoteusz Salamon and Bernhard Irsigler and Debraj Rakshit and Maciej Lewenstein and Tobias Grass and Ravindra W. Chhajlany}, url = {https://link.aps.org/doi/10.1103/PhysRevB.106.174503}, doi = {10.1103/PhysRevB.106.174503}, year = {2022}, date = {2022-11-04}, journal = {Phys. Rev. B}, volume = {106}, pages = {174503}, publisher = {American Physical Society}, abstract = {Stacking two layers of graphene with a relative twist angle gives rise to Moiré patterns, which can strongly modify electronic behavior and may lead to unconventional superconductivity. A synthetic version of twisted bilayers can be engineered with cold atoms in optical lattices. Here, the bilayer structure is mimicked through coupling between atomic sublevels, and the twist is achieved by a spatial modulation of this coupling. In the present paper, we investigate the superconducting behavior of fermionic atoms in such a synthetic twisted bilayer lattice. Attractive interactions between the atoms are treated on the mean-field level, and the superconducting behavior is analyzed via the self-consistently determined pairing gap. A strong enhancement of the pairing gap is found when a quasi-flat band structure occurs at the Fermi surface, reflecting the prominent role played by the twist on the superconductivity. The tunability of interactions allows for the switching of superconducting correlations from intra (synthetic) layer to inter (synthetic) layer. This includes also the intermediate scenario, in which the competition between inter- and intra-layer coupling completely destroys the superconducting behavior, resulting in re-entrant superconductivity upon tuning of the interactions.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Stacking two layers of graphene with a relative twist angle gives rise to Moiré patterns, which can strongly modify electronic behavior and may lead to unconventional superconductivity. A synthetic version of twisted bilayers can be engineered with cold atoms in optical lattices. Here, the bilayer structure is mimicked through coupling between atomic sublevels, and the twist is achieved by a spatial modulation of this coupling. In the present paper, we investigate the superconducting behavior of fermionic atoms in such a synthetic twisted bilayer lattice. Attractive interactions between the atoms are treated on the mean-field level, and the superconducting behavior is analyzed via the self-consistently determined pairing gap. A strong enhancement of the pairing gap is found when a quasi-flat band structure occurs at the Fermi surface, reflecting the prominent role played by the twist on the superconductivity. The tunability of interactions allows for the switching of superconducting correlations from intra (synthetic) layer to inter (synthetic) layer. This includes also the intermediate scenario, in which the competition between inter- and intra-layer coupling completely destroys the superconducting behavior, resulting in re-entrant superconductivity upon tuning of the interactions. |
2. | Shilan Abo, Grzegorz Chimczak, Anna Kowalewska-Kudłaszyk, Jan Peřina Jr, Ravindra W. Chhajlany, Adam Miranowicz Scientific Reports, 12 , pp. 17655, 2022, ISSN: 2045-2322. @article{shilan2022, title = {Hybrid photon–phonon blockade}, author = {Shilan Abo and Grzegorz Chimczak and Anna Kowalewska-Kudłaszyk and Jan Peřina Jr and Ravindra W. Chhajlany and Adam Miranowicz }, url = {https://www.nature.com/articles/s41598-022-21267-4}, doi = {https://doi.org/10.1038/s41598-022-21267-4}, issn = {2045-2322}, year = {2022}, date = {2022-10-21}, journal = {Scientific Reports}, volume = {12}, pages = {17655}, abstract = {We describe a novel type of blockade in a hybrid mode generated by linear coupling of photonic and phononic modes. We refer to this effect as hybrid photon–phonon blockade and show how it can be generated and detected in a driven nonlinear optomechanical superconducting system. Thus, we study boson-number correlations in the photon, phonon, and hybrid modes in linearly coupled microwave and mechanical resonators with a superconducting qubit inserted in one of them. We find such system parameters for which we observe eight types of different combinations of either blockade or tunnelling effects (defined via the sub- and super-Poissonian statistics, respectively) for photons, phonons, and hybrid bosons. In particular, we find that the hybrid photon–phonon blockade can be generated by mixing the photonic and phononic modes which do not exhibit blockade.}, keywords = {}, pubstate = {published}, tppubtype = {article} } We describe a novel type of blockade in a hybrid mode generated by linear coupling of photonic and phononic modes. We refer to this effect as hybrid photon–phonon blockade and show how it can be generated and detected in a driven nonlinear optomechanical superconducting system. Thus, we study boson-number correlations in the photon, phonon, and hybrid modes in linearly coupled microwave and mechanical resonators with a superconducting qubit inserted in one of them. We find such system parameters for which we observe eight types of different combinations of either blockade or tunnelling effects (defined via the sub- and super-Poissonian statistics, respectively) for photons, phonons, and hybrid bosons. In particular, we find that the hybrid photon–phonon blockade can be generated by mixing the photonic and phononic modes which do not exhibit blockade. |
1. | C. Lagoin, U. Bhattacharya, T. Grass, Ravindra W. Chhajlany, T. Salamon, K. Baldwin, L. Pfeiffer, M. Lewenstein, M. Holzmann, F. Dubin Extended Bose–Hubbard model with dipolar excitons Nature, 609 , pp. 485–489, 2022. @article{Lagoin2022, title = {Extended Bose–Hubbard model with dipolar excitons}, author = {C. Lagoin and U. Bhattacharya and T. Grass and Ravindra W. Chhajlany and T. Salamon and K. Baldwin and L. Pfeiffer and M. Lewenstein and M. Holzmann and F. Dubin}, url = {https://www.nature.com/articles/s41586-022-05123-z}, doi = {10.1038/s41586-022-05123-z}, year = {2022}, date = {2022-09-14}, journal = {Nature}, volume = {609}, pages = {485–489}, abstract = {The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials. For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions. However, accessing longer-range couplings has remained elusive experimentally. This marks the frontier towards the extended Bose–Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings. Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sites then stabilize an insulating state at half filling. This characteristic feature of the extended Bose–Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials. For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions. However, accessing longer-range couplings has remained elusive experimentally. This marks the frontier towards the extended Bose–Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings. Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sites then stabilize an insulating state at half filling. This characteristic feature of the extended Bose–Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites. |