List of publications
Department of Mesoscopic Physics
Department of Nonlinear Optics
Department of Physics of Nanostructures
Department of Theory of Condensed Matter
2021 |
|
17. | Anand Manaparambil, Ireneusz Weymann Spin Seebeck effect of correlated magnetic molecules Sci. Rep., 11 (9192), pp. 1-15, 2021. @article{Man2021April, title = {Spin Seebeck effect of correlated magnetic molecules}, author = {Anand Manaparambil and Ireneusz Weymann}, url = {https://www.nature.com/articles/s41598-021-88373-7}, doi = {10.1038/s41598-021-88373-7}, year = {2021}, date = {2021-04-28}, journal = {Sci. Rep.}, volume = {11}, number = {9192}, pages = {1-15}, abstract = {In this paper we investigate the spin-resolved thermoelectric properties of strongly correlated molecular junctions in the linear response regime. The magnetic molecule is modeled by a single orbital level to which the molecular core spin is attached by an exchange interaction. Using the numerical renormalization group method we analyze the behavior of the (spin) Seebeck effect, heat conductance and figure of merit for different model parameters of the molecule. We show that the thermopower strongly depends on the strength and type of the exchange interaction as well as the molecule’s magnetic anisotropy. When the molecule is coupled to ferromagnetic leads, the thermoelectric properties reveal an interplay between the spin-resolved tunneling processes and intrinsic magnetic properties of the molecule. Moreover, in the case of finite spin accumulation in the leads, the system exhibits the spin Seebeck effect. We demonstrate that a considerable spin Seebeck effect can develop when the molecule exhibits an easy-plane magnetic anisotropy, while the sign of the spin thermopower depends on the type and magnitude of the molecule’s exchange interaction.}, keywords = {}, pubstate = {published}, tppubtype = {article} } In this paper we investigate the spin-resolved thermoelectric properties of strongly correlated molecular junctions in the linear response regime. The magnetic molecule is modeled by a single orbital level to which the molecular core spin is attached by an exchange interaction. Using the numerical renormalization group method we analyze the behavior of the (spin) Seebeck effect, heat conductance and figure of merit for different model parameters of the molecule. We show that the thermopower strongly depends on the strength and type of the exchange interaction as well as the molecule’s magnetic anisotropy. When the molecule is coupled to ferromagnetic leads, the thermoelectric properties reveal an interplay between the spin-resolved tunneling processes and intrinsic magnetic properties of the molecule. Moreover, in the case of finite spin accumulation in the leads, the system exhibits the spin Seebeck effect. We demonstrate that a considerable spin Seebeck effect can develop when the molecule exhibits an easy-plane magnetic anisotropy, while the sign of the spin thermopower depends on the type and magnitude of the molecule’s exchange interaction. |
16. | Ataollah Kalantari Osgouei, Hodjat Hajian, Andriy E. Serebryannikov, Ekmel Ozbay J. Phys. D: Appl. Phys., 54 (27), pp. 275102, 2021. @article{Osgouei_2021, title = {Hybrid indium tin oxide-Au metamaterial as a multiband bi-functional light absorber in the visible and near-infrared ranges}, author = {Ataollah Kalantari Osgouei and Hodjat Hajian and Andriy E. Serebryannikov and Ekmel Ozbay}, url = {https://doi.org/10.1088/1361-6463/abf579}, doi = {10.1088/1361-6463/abf579}, year = {2021}, date = {2021-04-23}, journal = {J. Phys. D: Appl. Phys.}, volume = {54}, number = {27}, pages = {275102}, publisher = {IOP Publishing}, abstract = {Metamaterial nearly perfect light absorbers (MPAs) with dual-narrowband functionality—that absorb light in two narrowband adjacent wavelength regions—have attracted considerable attention due to their intriguing applications, such as sensing, photovoltaic, and thermal emission. Here, we propose a multi-band MPA with two narrowband absorption responses that are centered on the visible and near-infrared (NIR) wavelengths (773 nm and 900 nm, respectively) and a broadband absorptive characteristic in another window in the NIR region (ranging from 1530 nm to 2700 nm with a bandwidth of 1170 nm). The MPA comprises a periodic array of self-aligned hybrid indium tin oxide (ITO)-Au split-ring-resonators that are separated from an optically thick bottom reflector with a SiO2 layer. Based on numerical calculations, which are accompanied with a semi-analytical examination, we find that the dual narrowband and broadband responses are attributed to the hybridization of the optical responses of gold as a plasmonic material with the ones of ITO. Note that ITO acts as a low-loss dielectric in the visible range and a lossy plasmonic material in the NIR region. Moreover, due to the applied symmetry in the unit cell of the metamaterial, the proposed MPA represents polarization insensitive and omnidirectional absorptive features. The proposed metastructure can find potential applications in selective thermophotovoltaic devices, thermal emitters, and sensors.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Metamaterial nearly perfect light absorbers (MPAs) with dual-narrowband functionality—that absorb light in two narrowband adjacent wavelength regions—have attracted considerable attention due to their intriguing applications, such as sensing, photovoltaic, and thermal emission. Here, we propose a multi-band MPA with two narrowband absorption responses that are centered on the visible and near-infrared (NIR) wavelengths (773 nm and 900 nm, respectively) and a broadband absorptive characteristic in another window in the NIR region (ranging from 1530 nm to 2700 nm with a bandwidth of 1170 nm). The MPA comprises a periodic array of self-aligned hybrid indium tin oxide (ITO)-Au split-ring-resonators that are separated from an optically thick bottom reflector with a SiO2 layer. Based on numerical calculations, which are accompanied with a semi-analytical examination, we find that the dual narrowband and broadband responses are attributed to the hybridization of the optical responses of gold as a plasmonic material with the ones of ITO. Note that ITO acts as a low-loss dielectric in the visible range and a lossy plasmonic material in the NIR region. Moreover, due to the applied symmetry in the unit cell of the metamaterial, the proposed MPA represents polarization insensitive and omnidirectional absorptive features. The proposed metastructure can find potential applications in selective thermophotovoltaic devices, thermal emitters, and sensors. |
15. | Kacper Wrześniewski, Bartłomiej Baran, Ryszard Taranko, Tadeusz Domański, Ireneusz Weymann Phys. Rev. B, 103 , pp. 155420, 2021. @article{Wrzesniewski2021April, title = {Quench dynamics of a correlated quantum dot sandwiched between normal-metal and superconducting leads}, author = {Kacper Wrześniewski and Bartłomiej Baran and Ryszard Taranko and Tadeusz Domański and Ireneusz Weymann}, url = {https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.155420}, doi = {https://doi.org/10.1103/PhysRevB.103.155420}, year = {2021}, date = {2021-04-22}, journal = {Phys. Rev. B}, volume = {103}, pages = {155420}, abstract = {Quantum system abruptly driven from its stationary phase can reveal nontrivial dynamics upon approaching a new final state. We investigate here such dynamics for a correlated quantum dot sandwiched between the metallic and superconducting leads, considering two types of quenches feasible experimentally. The first one is related to a sudden change of the coupling between the dot and the superconducting lead, while the other one is associated with an abrupt shift of the quantum dot energy level. Using the time-dependent numerical renormalization group method, we examine and quantify the interplay between the proximity induced electron pairing with correlations caused by the on-dot Coulomb repulsion. We determine and discuss the time-dependent charge occupancy, on-dot pair correlation, transient currents, and analyze the evolution of the subgap quasiparticles, which could be empirically observed in the tunneling conductance. To get some insight into the dynamics of a biased junction, we make use of a mean-field approximation. We reveal the signatures of the time-dependent 0-π transition and demonstrate that the evolution of local observables exhibits damped quantum oscillations with frequencies given by the energies of Andreev bound states}, keywords = {}, pubstate = {published}, tppubtype = {article} } Quantum system abruptly driven from its stationary phase can reveal nontrivial dynamics upon approaching a new final state. We investigate here such dynamics for a correlated quantum dot sandwiched between the metallic and superconducting leads, considering two types of quenches feasible experimentally. The first one is related to a sudden change of the coupling between the dot and the superconducting lead, while the other one is associated with an abrupt shift of the quantum dot energy level. Using the time-dependent numerical renormalization group method, we examine and quantify the interplay between the proximity induced electron pairing with correlations caused by the on-dot Coulomb repulsion. We determine and discuss the time-dependent charge occupancy, on-dot pair correlation, transient currents, and analyze the evolution of the subgap quasiparticles, which could be empirically observed in the tunneling conductance. To get some insight into the dynamics of a biased junction, we make use of a mean-field approximation. We reveal the signatures of the time-dependent 0-π transition and demonstrate that the evolution of local observables exhibits damped quantum oscillations with frequencies given by the energies of Andreev bound states |
14. | Krzysztof Szulc, Simon Mendisch, Michał Mruczkiewicz, Francesca Casoli, Markus Becherer, Gianluca Gubbiotti Nonreciprocal spin-wave dynamics in Pt/Co/W/Co/Pt multilayers Phys. Rev. B, 103 , pp. 134404, 2021. @article{PhysRevB.103.134404, title = {Nonreciprocal spin-wave dynamics in Pt/Co/W/Co/Pt multilayers}, author = {Krzysztof Szulc and Simon Mendisch and Michał Mruczkiewicz and Francesca Casoli and Markus Becherer and Gianluca Gubbiotti}, url = {https://link.aps.org/doi/10.1103/PhysRevB.103.134404}, doi = {10.1103/PhysRevB.103.134404}, year = {2021}, date = {2021-04-01}, journal = {Phys. Rev. B}, volume = {103}, pages = {134404}, publisher = {American Physical Society}, abstract = {We present a detailed study of the spin-wave dynamics in single Pt/Co/W and double Pt/Co/W/Co/Pt ferromagnetic layer systems. The dispersion of spin waves was measured by wave-vector-resolved Brillouin light scattering spectroscopy while the in-plane and out-of-plane magnetization curves were measured by alternating gradient field magnetometry. The interfacial Dzyaloshinskii-Moriya interaction induced nonreciprocal dispersion relation was demonstrated for both single and double ferromagnetic layers and explicated by numerical simulations and theoretical formulas. The results indicate the crucial role of the order of layers deposition on the magnetic parameters. A significant difference between the perpendicular magnetic anisotropy constant in double ferromagnetic layer systems conduces to the decline of the interlayer interactions and different dispersion relations for the spin-wave modes. Our study provides a significant contribution to the realization of the multifunctional nonreciprocal magnonic devices based on ultrathin ferromagnetic/heavy-metal layer systems.}, keywords = {}, pubstate = {published}, tppubtype = {article} } We present a detailed study of the spin-wave dynamics in single Pt/Co/W and double Pt/Co/W/Co/Pt ferromagnetic layer systems. The dispersion of spin waves was measured by wave-vector-resolved Brillouin light scattering spectroscopy while the in-plane and out-of-plane magnetization curves were measured by alternating gradient field magnetometry. The interfacial Dzyaloshinskii-Moriya interaction induced nonreciprocal dispersion relation was demonstrated for both single and double ferromagnetic layers and explicated by numerical simulations and theoretical formulas. The results indicate the crucial role of the order of layers deposition on the magnetic parameters. A significant difference between the perpendicular magnetic anisotropy constant in double ferromagnetic layer systems conduces to the decline of the interlayer interactions and different dispersion relations for the spin-wave modes. Our study provides a significant contribution to the realization of the multifunctional nonreciprocal magnonic devices based on ultrathin ferromagnetic/heavy-metal layer systems. |
13. | Kacper Wrześniewski, Ireneusz Weymann Magnetization dynamics in a Majorana-wire–quantum-dot setup Phys. Rev. B, 103 , pp. 125413, 2021. @article{Wrzesniewski2021Mar, title = {Magnetization dynamics in a Majorana-wire–quantum-dot setup}, author = {Kacper Wrześniewski and Ireneusz Weymann}, url = {https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.125413}, doi = {https://doi.org/10.1103/PhysRevB.103.125413}, year = {2021}, date = {2021-03-11}, journal = {Phys. Rev. B}, volume = {103}, pages = {125413}, abstract = {We theoretically study the quench dynamics of the local magnetization in a hybrid Majorana-wire–quantum-dot system coupled to external leads. In order to thoroughly understand the origin of the dot magnetization dynamics, we consider either normal metal or ferromagnetic electrodes. In the first case, the magnetization arises exclusively from the proximity to the topological superconductor hosting Majorana zero-energy modes and the associated development of an induced exchange field. We predict a nonmonotonic dependence of the dot's magnetization in the odd-occupation regime and show that the dynamics is governed by the magnitude of the coupling to Majorana wire. However, when the system is coupled to ferromagnetic leads, the ferromagnet and Majorana contributions to the effective exchange field are competing with each other and reveal a nontrivial dynamical behavior. As a result, the time-dependent magnetization can undergo multiple sign changes preceding the relaxation to a new thermal value. We also identify the transport regime, where fine tuning of the coupling to Majorana wire within a narrow range allows one to manipulate the magnetic state of the system. The effect of spin polarization of the leads and influence of the finite overlap between the Majorana edge modes are also examined. Moreover, we analyze the quench in the energy of the quantum dot orbital level and demonstrate that the rather straightforward charge dynamics can disguise nontrivial time evolution of the magnetization. Finally, we compare predicted dynamics with results obtained for quantum dot coupled to spin-polarized fermionic bound state instead of Majorana zero-energy mode.}, keywords = {}, pubstate = {published}, tppubtype = {article} } We theoretically study the quench dynamics of the local magnetization in a hybrid Majorana-wire–quantum-dot system coupled to external leads. In order to thoroughly understand the origin of the dot magnetization dynamics, we consider either normal metal or ferromagnetic electrodes. In the first case, the magnetization arises exclusively from the proximity to the topological superconductor hosting Majorana zero-energy modes and the associated development of an induced exchange field. We predict a nonmonotonic dependence of the dot's magnetization in the odd-occupation regime and show that the dynamics is governed by the magnitude of the coupling to Majorana wire. However, when the system is coupled to ferromagnetic leads, the ferromagnet and Majorana contributions to the effective exchange field are competing with each other and reveal a nontrivial dynamical behavior. As a result, the time-dependent magnetization can undergo multiple sign changes preceding the relaxation to a new thermal value. We also identify the transport regime, where fine tuning of the coupling to Majorana wire within a narrow range allows one to manipulate the magnetic state of the system. The effect of spin polarization of the leads and influence of the finite overlap between the Majorana edge modes are also examined. Moreover, we analyze the quench in the energy of the quantum dot orbital level and demonstrate that the rather straightforward charge dynamics can disguise nontrivial time evolution of the magnetization. Finally, we compare predicted dynamics with results obtained for quantum dot coupled to spin-polarized fermionic bound state instead of Majorana zero-energy mode. |
12. | Krzysztof Sobucki, Wojciech Śmigaj, Justyna Rychły, Maciej Krawczyk, Paweł Gruszecki Sci. Rep., 11 (1), pp. 4428, 2021, ISSN: 2045-2322. @article{sobucki_resonant_2021, title = {Resonant subwavelength control of the phase of spin waves reflected from a Gires–Tournois interferometer}, author = {Krzysztof Sobucki and Wojciech Śmigaj and Justyna Rychły and Maciej Krawczyk and Paweł Gruszecki}, url = {https://www.nature.com/articles/s41598-021-83307-9}, doi = {10.1038/s41598-021-83307-9}, issn = {2045-2322}, year = {2021}, date = {2021-02-24}, urldate = {2021-02-25}, journal = {Sci. Rep.}, volume = {11}, number = {1}, pages = {4428}, abstract = {Subwavelength resonant elements are essential building blocks of metamaterials and metasurfaces, which have revolutionized photonics. Despite similarities between different wave phenomena, other types of interactions can make subwavelength coupling significantly distinct; its investigation in their context is therefore of interest both from the physics and applications perspective. In this work, we demonstrate a fully magnonic Gires–Tournois interferometer based on a subwavelength resonator made of a narrow ferromagnetic stripe lying above the edge of a ferromagnetic film. The bilayer formed by the stripe and the film underneath supports two propagative spin-wave modes, one strongly coupled with spin waves propagating in the rest of the film and another almost completely reflected at the ends of the bilayer. When the Fabry–Perot resonance conditions for this mode are satisfied, the weak coupling between both modes is sufficient to achieve high sensitivity of the phase of waves reflected from the resonator to the stripe width and, more interestingly, also to the stripe-film separation. Such spin-wave phase manipulation capabilities are a prerequisite for the design of spin-wave metasurfaces and may stimulate development of magnonic logic devices and sensors detecting magnetic nanoparticles.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Subwavelength resonant elements are essential building blocks of metamaterials and metasurfaces, which have revolutionized photonics. Despite similarities between different wave phenomena, other types of interactions can make subwavelength coupling significantly distinct; its investigation in their context is therefore of interest both from the physics and applications perspective. In this work, we demonstrate a fully magnonic Gires–Tournois interferometer based on a subwavelength resonator made of a narrow ferromagnetic stripe lying above the edge of a ferromagnetic film. The bilayer formed by the stripe and the film underneath supports two propagative spin-wave modes, one strongly coupled with spin waves propagating in the rest of the film and another almost completely reflected at the ends of the bilayer. When the Fabry–Perot resonance conditions for this mode are satisfied, the weak coupling between both modes is sufficient to achieve high sensitivity of the phase of waves reflected from the resonator to the stripe width and, more interestingly, also to the stripe-film separation. Such spin-wave phase manipulation capabilities are a prerequisite for the design of spin-wave metasurfaces and may stimulate development of magnonic logic devices and sensors detecting magnetic nanoparticles. |
11. | Paweł Gruszecki, Igor L. Lyubchanskii, Konstantin Y Guslienko, Maciej Krawczyk Appl. Phys. Lett., 118 (6), pp. 062408, 2021. @article{doi:10.1063/5.0041030, title = {Local non-linear excitation of sub-100 nm bulk-type spin waves by edge-localized spin waves in magnetic films}, author = {Paweł Gruszecki and Igor L. Lyubchanskii and Konstantin Y Guslienko and Maciej Krawczyk}, doi = {10.1063/5.0041030}, year = {2021}, date = {2021-02-11}, journal = {Appl. Phys. Lett.}, volume = {118}, number = {6}, pages = {062408}, abstract = {The excitation of high-frequency short-wavelength spin waves is a challenge limiting the application of these propagating magnetization disturbances in information processing systems. We propose a method of local excitation of the high-frequency spin waves using the non-linear nature of magnetization dynamics. We demonstrate with numeric simulations that an edge-localized spin wave can be used to excite plane waves propagating obliquely from the film's edge at a doubled frequency and over twice shorter in wavelength. The excitation mechanism is a direct result of the ellipticity of the magnetic moment precession that is related to the edge-mode propagation. As a consequence, the magnetization component tangential to the equilibrium orientation oscillates with doubled temporal and spatial frequencies, which leads to efficient excitation of the plane spin waves. The threshold-less non-linear process of short-wavelength spin-wave excitation proposed in our study is promising for integration with an inductive or point-like spin-torque source of edge spin waves. The research leading to these results received funding from the National Science Centre of Poland, Project No. 2019/35/D/ST3/03729. I.L.L. acknowledges support from a COST action under Project No. CA17123 MAGNETOFON. K.Y.G. acknowledges support from IKERBASQUE (the Basque Foundation for Science) and from the Spanish Ministerio de Ciencia, Innovacion y Universidades Grant No. PID2019-108075RB-C33/AEI/10.13039/501100011033. The simulations were partially performed at the Poznan Supercomputing and Networking Center (Grant No. 398).}, keywords = {}, pubstate = {published}, tppubtype = {article} } The excitation of high-frequency short-wavelength spin waves is a challenge limiting the application of these propagating magnetization disturbances in information processing systems. We propose a method of local excitation of the high-frequency spin waves using the non-linear nature of magnetization dynamics. We demonstrate with numeric simulations that an edge-localized spin wave can be used to excite plane waves propagating obliquely from the film's edge at a doubled frequency and over twice shorter in wavelength. The excitation mechanism is a direct result of the ellipticity of the magnetic moment precession that is related to the edge-mode propagation. As a consequence, the magnetization component tangential to the equilibrium orientation oscillates with doubled temporal and spatial frequencies, which leads to efficient excitation of the plane spin waves. The threshold-less non-linear process of short-wavelength spin-wave excitation proposed in our study is promising for integration with an inductive or point-like spin-torque source of edge spin waves. The research leading to these results received funding from the National Science Centre of Poland, Project No. 2019/35/D/ST3/03729. I.L.L. acknowledges support from a COST action under Project No. CA17123 MAGNETOFON. K.Y.G. acknowledges support from IKERBASQUE (the Basque Foundation for Science) and from the Spanish Ministerio de Ciencia, Innovacion y Universidades Grant No. PID2019-108075RB-C33/AEI/10.13039/501100011033. The simulations were partially performed at the Poznan Supercomputing and Networking Center (Grant No. 398). |
10. | Jarosław W. Kłos, Igor L. Lyubchanskii, Maciej Krawczyk, Paweł Gruszecki, Szymon Mieszczak, Justyna Rychły, Yuliya S. Dadoenkova, Nataliya N. Dadoenkova Magnonics and Confinement of Light in Photonic–Magnonic Crystals, in Optomagnonic Structures Almpanis, Evangelos (Ed.): Chapter 2, pp. 79–134, World Scientific Publishing, Singapure, 2021, ISBN: 978-981-122-005-0. @inbook{opto-mag, title = {Magnonics and Confinement of Light in Photonic–Magnonic Crystals, in Optomagnonic Structures}, author = {Jarosław W. Kłos and Igor L. Lyubchanskii and Maciej Krawczyk and Paweł Gruszecki and Szymon Mieszczak and Justyna Rychły and Yuliya S. Dadoenkova and Nataliya N. Dadoenkova}, editor = {Evangelos Almpanis}, doi = {10.1142/9789811220050_0002}, isbn = {978-981-122-005-0}, year = {2021}, date = {2021-02-08}, pages = {79–134}, publisher = {World Scientific Publishing}, address = {Singapure}, chapter = {2}, abstract = {We discuss the spin-wave confinement in the magnetic components of magnetophotonic structures. In the initial sections of the chapter, we describe the principles of magnetization dynamics, including both the exchange and dipolar interactions. We showed that the spin-wave spectrum in confined geometry is determined not only by the spatial constraints but is also strongly influenced by non-local demagnetizing effects. In addition, we analyze the localization of light in the regions of spin-wave confinement, which can strengthen the magneto–optical interaction. Such enhancement can be potentially realized in photonic–magnonic crystals, where the light localization in magnetic components of the structure results from the periodicity and the spin waves co-exist with electromagnetic waves. The final sections are devoted to the Faraday effect and Goos–Hänchen effect in photonic–magnonic crystals.}, keywords = {}, pubstate = {published}, tppubtype = {inbook} } We discuss the spin-wave confinement in the magnetic components of magnetophotonic structures. In the initial sections of the chapter, we describe the principles of magnetization dynamics, including both the exchange and dipolar interactions. We showed that the spin-wave spectrum in confined geometry is determined not only by the spatial constraints but is also strongly influenced by non-local demagnetizing effects. In addition, we analyze the localization of light in the regions of spin-wave confinement, which can strengthen the magneto–optical interaction. Such enhancement can be potentially realized in photonic–magnonic crystals, where the light localization in magnetic components of the structure results from the periodicity and the spin waves co-exist with electromagnetic waves. The final sections are devoted to the Faraday effect and Goos–Hänchen effect in photonic–magnonic crystals. |
9. | Nick Träger, Paweł Gruszecki, Filip Lisiecki, Felix Groß, Johannes Förster, Markus Weigand, Hubert Głowiński, Piotr Kuświk, Janusz Dubowik, Gisela Schütz, Maciej Krawczyk, Joachim Gräfe Real-Space Observation of Magnon Interaction with Driven Space-Time Crystals Phys. Rev. Lett., 126 , pp. 057201, 2021. @article{PhysRevLett.126.057201, title = {Real-Space Observation of Magnon Interaction with Driven Space-Time Crystals}, author = {Nick Träger and Paweł Gruszecki and Filip Lisiecki and Felix Groß and Johannes Förster and Markus Weigand and Hubert Głowiński and Piotr Kuświk and Janusz Dubowik and Gisela Schütz and Maciej Krawczyk and Joachim Gräfe}, url = {https://doi.org/10.1103/PhysRevLett.126.057201}, doi = {10.1103/PhysRevLett.126.057201}, year = {2021}, date = {2021-02-03}, journal = {Phys. Rev. Lett.}, volume = {126}, pages = {057201}, abstract = {The concept of space-time crystals (STC), i.e., translational symmetry breaking in time and space, was recently proposed and experimentally demonstrated for quantum systems. Here, we transfer this concept to magnons and experimentally demonstrate a driven STC at room temperature. The STC is realized by strong homogeneous microwave pumping of a micron-sized permalloy (Py) stripe and is directly imaged by scanning transmission x-ray microscopy (STXM). For a fundamental understanding of the formation of the STC, micromagnetic simulations are carefully adapted to model the experimental findings. Beyond the mere generation of a STC, we observe the formation of a magnonic band structure due to back folding of modes at the STC’s Brillouin zone boundaries. We show interactions of magnons with the STC that appear as lattice scattering, which results in the generation of ultrashort spin waves (SW) down to 100-nm wavelengths that cannot be described by classical dispersion relations for linear SW excitation. We expect that room-temperature STCs will be useful to investigate nonlinear wave physics, as they can be easily generated and manipulated to control their spatial and temporal band structures.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The concept of space-time crystals (STC), i.e., translational symmetry breaking in time and space, was recently proposed and experimentally demonstrated for quantum systems. Here, we transfer this concept to magnons and experimentally demonstrate a driven STC at room temperature. The STC is realized by strong homogeneous microwave pumping of a micron-sized permalloy (Py) stripe and is directly imaged by scanning transmission x-ray microscopy (STXM). For a fundamental understanding of the formation of the STC, micromagnetic simulations are carefully adapted to model the experimental findings. Beyond the mere generation of a STC, we observe the formation of a magnonic band structure due to back folding of modes at the STC’s Brillouin zone boundaries. We show interactions of magnons with the STC that appear as lattice scattering, which results in the generation of ultrashort spin waves (SW) down to 100-nm wavelengths that cannot be described by classical dispersion relations for linear SW excitation. We expect that room-temperature STCs will be useful to investigate nonlinear wave physics, as they can be easily generated and manipulated to control their spatial and temporal band structures. |
8. | Nick Träger, Filip Lisiecki, Robert Lawitzki, Markus Weigand, Hubert Głowiński, Gisela Schütz, Guido Schmitz, Piotr Kuświk, Maciej Krawczyk, Joachim Gräfe, Paweł Gruszecki Competing spin wave emission mechanisms revealed by time-resolved x-ray microscopy Phys. Rev. B, 103 , pp. 014430, 2021. @article{PhysRevB.103.014430, title = {Competing spin wave emission mechanisms revealed by time-resolved x-ray microscopy}, author = {Nick Träger and Filip Lisiecki and Robert Lawitzki and Markus Weigand and Hubert Głowiński and Gisela Schütz and Guido Schmitz and Piotr Kuświk and Maciej Krawczyk and Joachim Gräfe and Paweł Gruszecki}, url = {https://link.aps.org/doi/10.1103/PhysRevB.103.014430}, doi = {10.1103/PhysRevB.103.014430}, year = {2021}, date = {2021-01-19}, journal = {Phys. Rev. B}, volume = {103}, pages = {014430}, publisher = {American Physical Society}, abstract = {Spin wave emission and propagation in magnonic waveguides represent a highly promising alternative for beyond-CMOS computing. It is therefore all the more important to fully understand the underlying physics of the emission process. Here, we use time-resolved scanning transmission x-ray microscopy to directly image the formation process of the globally excited local emission of spin waves in a permalloy waveguide at the nanoscale. Thereby, we observe spin wave emission from the corner of the waveguide as well as from a local oscillation of a domain-wall-like structure within the waveguide. Additionally, an isofrequency contour analysis is used to fully explain the origin of quasicylindrical spin wave excitation from the corner and its concurrent nonreflection and nonrefraction at the domain interface. This study is complemented by micromagnetic simulations which perfectly fit the experimental findings. Thus, we clarify the fundamental question of the emission mechanisms in magnonic waveguides which lay the basis for future magnonic operations.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Spin wave emission and propagation in magnonic waveguides represent a highly promising alternative for beyond-CMOS computing. It is therefore all the more important to fully understand the underlying physics of the emission process. Here, we use time-resolved scanning transmission x-ray microscopy to directly image the formation process of the globally excited local emission of spin waves in a permalloy waveguide at the nanoscale. Thereby, we observe spin wave emission from the corner of the waveguide as well as from a local oscillation of a domain-wall-like structure within the waveguide. Additionally, an isofrequency contour analysis is used to fully explain the origin of quasicylindrical spin wave excitation from the corner and its concurrent nonreflection and nonrefraction at the domain interface. This study is complemented by micromagnetic simulations which perfectly fit the experimental findings. Thus, we clarify the fundamental question of the emission mechanisms in magnonic waveguides which lay the basis for future magnonic operations. |
7. | Ataollah Kalantari Osgouei, Hodjat Hajian, Bahram Khalichi, Andriy E. Serebryannikov, Amir Ghobadi, Ekmel Ozbay Active Tuning from Narrowband to Broadband Absorbers Using a Sub-wavelength VO2 Embedded Layer Plasmonics, 2021, ISSN: 1557-1963. @article{kalantari_osgouei_active_2021, title = {Active Tuning from Narrowband to Broadband Absorbers Using a Sub-wavelength VO2 Embedded Layer}, author = {Ataollah Kalantari Osgouei and Hodjat Hajian and Bahram Khalichi and Andriy E. Serebryannikov and Amir Ghobadi and Ekmel Ozbay}, url = {https://doi.org/10.1007/s11468-020-01370-w}, doi = {10.1007/s11468-020-01370-w}, issn = {1557-1963}, year = {2021}, date = {2021-01-18}, urldate = {2021-06-11}, journal = {Plasmonics}, abstract = {Metamaterial perfect absorbers (MPAs) with dynamic thermal tuning features are able to control the absorption performance of the resonances, providing diverse applications spanning from optical switches and filters to modulators. In this paper, we propose an MPA with diverse functionalities enabled by vanadium dioxide (VO2) embedded in a metal-dielectric plasmonic structure. For the initial design purpose, a silicon (Si) nanograting on a silver (Ag) mirror is proposed to have multiple resonant responses in the near infrared (NIR) region. Then, the insertion of a thin VO2 layer at the right position enables the design to act as an on/off switch and resonance tuner. In the insulator phase of VO2, in which the permittivity data of VO2 is similar to that of Si, a double strong resonant behavior is achieved within the NIR region. By increasing the temperature, the state of VO2 transforms from insulator to metallic so that the absorption bands turn into three distinct resonant peaks with close spectral positions. Upon this transformation, a new resonance emerges and the existing resonance features experience blue/red shifts in the spectral domain. The superposition of these peaks makes the overall absorption bandwidth broad. Although Si has a small thermo-optic coefficient, owing to strong light confinement in the ultrasmall gaps, a substantial tuning can be achieved within the Si nanogratings. Therefore, the proposed hybrid design can provide multi-resonance tunable features to cover a broad range and can be a promising strategy for the design of linearly thermal-tunable and broadband MPAs. Owing to the proposed double tuning feature, the resonance wavelengths exhibits great sensitivity to temperature, covering a broad wavelength range$$.$$Overall, the proposed design strategy demonstrates diverse functionalities enabled by the integration of a thin VO2 layer with plasmonic absorbers.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Metamaterial perfect absorbers (MPAs) with dynamic thermal tuning features are able to control the absorption performance of the resonances, providing diverse applications spanning from optical switches and filters to modulators. In this paper, we propose an MPA with diverse functionalities enabled by vanadium dioxide (VO2) embedded in a metal-dielectric plasmonic structure. For the initial design purpose, a silicon (Si) nanograting on a silver (Ag) mirror is proposed to have multiple resonant responses in the near infrared (NIR) region. Then, the insertion of a thin VO2 layer at the right position enables the design to act as an on/off switch and resonance tuner. In the insulator phase of VO2, in which the permittivity data of VO2 is similar to that of Si, a double strong resonant behavior is achieved within the NIR region. By increasing the temperature, the state of VO2 transforms from insulator to metallic so that the absorption bands turn into three distinct resonant peaks with close spectral positions. Upon this transformation, a new resonance emerges and the existing resonance features experience blue/red shifts in the spectral domain. The superposition of these peaks makes the overall absorption bandwidth broad. Although Si has a small thermo-optic coefficient, owing to strong light confinement in the ultrasmall gaps, a substantial tuning can be achieved within the Si nanogratings. Therefore, the proposed hybrid design can provide multi-resonance tunable features to cover a broad range and can be a promising strategy for the design of linearly thermal-tunable and broadband MPAs. Owing to the proposed double tuning feature, the resonance wavelengths exhibits great sensitivity to temperature, covering a broad wavelength range$$.$$Overall, the proposed design strategy demonstrates diverse functionalities enabled by the integration of a thin VO2 layer with plasmonic absorbers. |
6. | V.V. Bogdanov, R.V. Vovk, S.V. Dukarov, M.V. Klislitsa, S.I. Petrushenko, V.N. Sukhov, G.Ya. Khadzhai, Y.L. Goulatis, S.R. Vovk, E.S. Gevorkyan, A. Feher, P. Kollar, J. Fuzer, Jolanta Natalia Latosińska Electron Microscopic Study of Interdiffusion in Equiatomic Fe-Ni Composite Acta Physica Polonica A, 139 (1), pp. 62, 2021. @article{Bogdanov2021, title = {Electron Microscopic Study of Interdiffusion in Equiatomic Fe-Ni Composite}, author = {V.V. Bogdanov and R.V. Vovk and S.V. Dukarov and M.V. Klislitsa and S.I. Petrushenko and V.N. Sukhov and G.Ya. Khadzhai and Y.L. Goulatis and S.R. Vovk and E.S. Gevorkyan and A. Feher and P. Kollar and J. Fuzer and Jolanta Natalia Latosińska}, doi = {10.12693/APhysPolA.139.62}, year = {2021}, date = {2021-01-15}, journal = {Acta Physica Polonica A}, volume = {139}, number = {1}, pages = {62}, abstract = {The paper presents a study of interdiffusion processes in a binary Fe-Ni system (obtained by electroconsolidation of nickel and iron powders) by X-ray energy dispersive spectroscopy. Well-separated regions of almost pure iron and nickel have been discovered. The content of nickel, estimated from the concentration dependence of the interdiffusion coefficient, which determines the kinetics of the homogenization process of the electroconsolidated Fe-Ni composite sample, was ~70 at.%. The value of the interdiffusion coefficient of the electroconsolidated Fe-Ni composite is significantly higher than that of the alloy of similar composition which probably results from the effect of spark plasma sintering technology (pressure and current along the same direction during consolidation) but also from a significant contribution of diffusion with mass transfer along the particle boundaries in the composite.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The paper presents a study of interdiffusion processes in a binary Fe-Ni system (obtained by electroconsolidation of nickel and iron powders) by X-ray energy dispersive spectroscopy. Well-separated regions of almost pure iron and nickel have been discovered. The content of nickel, estimated from the concentration dependence of the interdiffusion coefficient, which determines the kinetics of the homogenization process of the electroconsolidated Fe-Ni composite sample, was ~70 at.%. The value of the interdiffusion coefficient of the electroconsolidated Fe-Ni composite is significantly higher than that of the alloy of similar composition which probably results from the effect of spark plasma sintering technology (pressure and current along the same direction during consolidation) but also from a significant contribution of diffusion with mass transfer along the particle boundaries in the composite. |
5. | Ye-Hong Chen, Wei Qin, Xin Wang, Adam Miranowicz, Franco Nori Phys. Rev. Lett., 126 , pp. 023602, 2021. @article{PhysRevLett.126.023602, title = {Shortcuts to Adiabaticity for the Quantum Rabi Model: Efficient Generation of Giant Entangled Cat States via Parametric Amplification}, author = {Ye-Hong Chen and Wei Qin and Xin Wang and Adam Miranowicz and Franco Nori}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.126.023602}, doi = {10.1103/PhysRevLett.126.023602}, year = {2021}, date = {2021-01-14}, journal = {Phys. Rev. Lett.}, volume = {126}, pages = {023602}, publisher = {American Physical Society}, abstract = {We propose a method for the fast generation of nonclassical ground states of the Rabi model in the ultrastrong and deep-strong coupling regimes via the shortcuts-to-adiabatic (STA) dynamics. The time-dependent quantum Rabi model is simulated by applying parametric amplification to the Jaynes-Cummings model. Using experimentally feasible parametric drive, this STA protocol can generate large-size Schrödinger cat states, through a process that is ∼10 times faster compared to adiabatic protocols. Such fast evolution increases the robustness of our protocol against dissipation. Our method enables one to freely design the parametric drive, so that the target state can be generated in the lab frame. A largely detuned light-matter coupling makes the protocol robust against imperfections of the operation times in experiments.}, keywords = {}, pubstate = {published}, tppubtype = {article} } We propose a method for the fast generation of nonclassical ground states of the Rabi model in the ultrastrong and deep-strong coupling regimes via the shortcuts-to-adiabatic (STA) dynamics. The time-dependent quantum Rabi model is simulated by applying parametric amplification to the Jaynes-Cummings model. Using experimentally feasible parametric drive, this STA protocol can generate large-size Schrödinger cat states, through a process that is ∼10 times faster compared to adiabatic protocols. Such fast evolution increases the robustness of our protocol against dissipation. Our method enables one to freely design the parametric drive, so that the target state can be generated in the lab frame. A largely detuned light-matter coupling makes the protocol robust against imperfections of the operation times in experiments. |
4. | Joanna K. Kalaga, Anna Kowalewska-Kudłaszyk, Mateusz Nowotarski, Wiesław Leoński Violation of Leggett–Garg Inequalities in a Kerr-Type Chaotic System Photonics, 8 (1), pp. 20, 2021. @article{Kalaga2021, title = {Violation of Leggett–Garg Inequalities in a Kerr-Type Chaotic System}, author = {Joanna K. Kalaga and Anna Kowalewska-Kudłaszyk and Mateusz Nowotarski and Wiesław Leoński}, url = {https://doi.org/10.3390/photonics8010020}, doi = {10.3390/photonics8010020}, year = {2021}, date = {2021-01-12}, journal = {Photonics}, volume = {8}, number = {1}, pages = {20}, publisher = {MDPI AG}, abstract = {We consider a quantum nonlinear Kerr-like oscillator externally pumped by a series of ultrashort coherent pulses to analyze the quantum time-correlations appearing while the system evolves. For that purpose, we examine the violation of the Leggett–Garg inequality. We show how the character of such correlations changes when the system’s dynamics correspond to the regular and chaotic regions of its classical counterpart.}, keywords = {}, pubstate = {published}, tppubtype = {article} } We consider a quantum nonlinear Kerr-like oscillator externally pumped by a series of ultrashort coherent pulses to analyze the quantum time-correlations appearing while the system evolves. For that purpose, we examine the violation of the Leggett–Garg inequality. We show how the character of such correlations changes when the system’s dynamics correspond to the regular and chaotic regions of its classical counterpart. |
3. | Nandan K. P. Babu, Aleksandra Trzaskowska, Piotr Graczyk, Grzegorz Centała, Szymon Mieszczak, Hubert Głowiński, Miłosz Zdunek, Sławomir Mielcarek, Jarosław W. Kłos Nano Lett., 21 (2), pp. 946-951, 2021. @article{doi:10.1021/acs.nanolett.0c03692, title = {The Interaction between Surface Acoustic Waves and Spin Waves: The Role of Anisotropy and Spatial Profiles of the Modes}, author = {Nandan K. P. Babu and Aleksandra Trzaskowska and Piotr Graczyk and Grzegorz Centała and Szymon Mieszczak and Hubert Głowiński and Miłosz Zdunek and Sławomir Mielcarek and Jarosław W. Kłos}, url = {https://doi.org/10.1021/acs.nanolett.0c03692}, doi = {10.1021/acs.nanolett.0c03692}, year = {2021}, date = {2021-01-01}, journal = {Nano Lett.}, volume = {21}, number = {2}, pages = {946-951}, abstract = {The interaction between different types of wave excitation in hybrid systems is usually anisotropic. Magnetoelastic coupling between surface acoustic waves and spin waves strongly depends on the direction of the external magnetic field. However, in the present study we observe that even if the orientation of the field is supportive for the coupling, the magnetoelastic interaction can be significantly reduced for surface acoustic waves with a particular profile in the direction normal to the surface at distances much smaller than the wavelength. We use Brillouin light scattering for the investigation of thermally excited phonons and magnons in a magnetostrictive CoFeB/Au multilayer deposited on a Si substrate. The experimental data are interpreted on the basis of a linearized model of interaction between surface acoustic waves and spin waves.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The interaction between different types of wave excitation in hybrid systems is usually anisotropic. Magnetoelastic coupling between surface acoustic waves and spin waves strongly depends on the direction of the external magnetic field. However, in the present study we observe that even if the orientation of the field is supportive for the coupling, the magnetoelastic interaction can be significantly reduced for surface acoustic waves with a particular profile in the direction normal to the surface at distances much smaller than the wavelength. We use Brillouin light scattering for the investigation of thermally excited phonons and magnons in a magnetostrictive CoFeB/Au multilayer deposited on a Si substrate. The experimental data are interpreted on the basis of a linearized model of interaction between surface acoustic waves and spin waves. |
2. | Ricarda Pütt, Piotr Kozłowski, Irina Werner, Jan Griebel, Sebastian Schmitz, Jonas Warneke, Kirill Yu. Monakhov P2V3W15-Polyoxometalates Functionalized with Phthalocyaninato Y and Yb Moieties Inorg. Chem. , 60 (1), pp. 80-86, 2021, (PMID: 33180468). @article{Putt, title = {P2V3W15-Polyoxometalates Functionalized with Phthalocyaninato Y and Yb Moieties}, author = {Ricarda Pütt and Piotr Kozłowski and Irina Werner and Jan Griebel and Sebastian Schmitz and Jonas Warneke and Kirill Yu. Monakhov}, url = {https://doi.org/10.1021/acs.inorgchem.0c02257}, doi = {10.1021/acs.inorgchem.0c02257}, year = {2021}, date = {2021-01-01}, journal = {Inorg. Chem. }, volume = {60}, number = {1}, pages = {80-86}, abstract = {A tris(alkoxo)pyridine-augmented Wells–Dawson polyoxometalate (nBu4N)6[WD-Py] (WD = P2V3W15O59(OCH2)3C, Py = C5H4N) was functionalized with phthalocyaninato metal moieties (MPc where M = Y or Yb and Pc = C32H16N8) to afford (nBu4N)4[HWD-Py(MPc)] compounds. High-resolution mass spectrometry was used to detect and identify the hybrid assembly. The magnetism studies reveal substantial differences between M = Yb (monomeric, single-ion paramagnetism) and M = Y (containing dimers, radical character). The results of electronic paramagnetic resonance spectroscopy, SQUID magnetometry, and magnetochemical calculations indicate the presence of intramolecular charge transfer from the MPc moiety to the polyoxometalate and of intermolecular charge transfer from the MPc moiety of one molecule to the polyoxometalate unit of another molecule. These compounds with identified VIV ions represent unique examples of transition-metal/lanthanide complex-POM hybrid compounds with nonphotoinduced charge transfer between electron donor and acceptor centers.}, note = {PMID: 33180468}, keywords = {}, pubstate = {published}, tppubtype = {article} } A tris(alkoxo)pyridine-augmented Wells–Dawson polyoxometalate (nBu4N)6[WD-Py] (WD = P2V3W15O59(OCH2)3C, Py = C5H4N) was functionalized with phthalocyaninato metal moieties (MPc where M = Y or Yb and Pc = C32H16N8) to afford (nBu4N)4[HWD-Py(MPc)] compounds. High-resolution mass spectrometry was used to detect and identify the hybrid assembly. The magnetism studies reveal substantial differences between M = Yb (monomeric, single-ion paramagnetism) and M = Y (containing dimers, radical character). The results of electronic paramagnetic resonance spectroscopy, SQUID magnetometry, and magnetochemical calculations indicate the presence of intramolecular charge transfer from the MPc moiety to the polyoxometalate and of intermolecular charge transfer from the MPc moiety of one molecule to the polyoxometalate unit of another molecule. These compounds with identified VIV ions represent unique examples of transition-metal/lanthanide complex-POM hybrid compounds with nonphotoinduced charge transfer between electron donor and acceptor centers. |
1. | Sławomir Mielcarek, A. Majchrowski Growth of ABO3 and BO2 crystals (in book: Switching effects in transition metals oxides) Szot, K S, Krok, F, Roleder, K (Ed.): Chapter 2, PWN, 2021. @inbook{switching_effects, title = {Growth of ABO3 and BO2 crystals (in book: Switching effects in transition metals oxides)}, author = {Sławomir Mielcarek and A. Majchrowski}, editor = {K. S. Szot and F. Krok and K. Roleder}, year = {2021}, date = {2021-01-01}, publisher = {PWN}, chapter = {2}, abstract = {Structural quality as well as stoichiometry of crystalline materials are the main factors influencing their physical properties, and therefore decide on their potential applications. Bulk crystallization of many oxide perovskites suffers from many drawbacks due to properties of melts, existing high-temperature phase transitions, and non-stoichiometry, among others. However, tremendous progress in thin-film and other structure technologies allows, mainly due to vapor techniques, fabrication of high-quality samples for further investigations and applications. Understanding of thermodynamics and kinetics of crystal growth, nucleation processes, and knowledge of proper crystal growth techniques is essential to obtain good quality crystals. The chapter is mainly devoted to crystal growth techniques of chosen oxide crystals. The theory of crystal growth, due to limited space, is described in short. Given references will allow the reader a full view into its complexity and many aspects of phenomena connected with crystallization. In the last part of the chapter methods of analysis of as-grown crystals are described.}, keywords = {}, pubstate = {published}, tppubtype = {inbook} } Structural quality as well as stoichiometry of crystalline materials are the main factors influencing their physical properties, and therefore decide on their potential applications. Bulk crystallization of many oxide perovskites suffers from many drawbacks due to properties of melts, existing high-temperature phase transitions, and non-stoichiometry, among others. However, tremendous progress in thin-film and other structure technologies allows, mainly due to vapor techniques, fabrication of high-quality samples for further investigations and applications. Understanding of thermodynamics and kinetics of crystal growth, nucleation processes, and knowledge of proper crystal growth techniques is essential to obtain good quality crystals. The chapter is mainly devoted to crystal growth techniques of chosen oxide crystals. The theory of crystal growth, due to limited space, is described in short. Given references will allow the reader a full view into its complexity and many aspects of phenomena connected with crystallization. In the last part of the chapter methods of analysis of as-grown crystals are described. |